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ABSTRACT

For a plasma with finite cross-section of the sort which occurs typically
in laboratory plasma waves experiments, in a constant magnetic field, the
Landau damping (or growth) is obtained by a variational procedure in terms
of the plasma velocity distribution function and potential and density pro-
files. The result is applied to the damping associated with the upper and
lower branches of the dispersion curve for longitudinal electron plasma waves
in the case of a Maxwellian velocity distribution in sleb and cylindrical
geometries. Application is also made to the growth rates resulting from a
low density electron beam with radially dependent energy superposed on a Max-

wellian.
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I. INTRODUCTION

Theoretical investigations of the dispersion relations and damping of
longitudinal electron plasma waves1 have been carried out in considerable
detail for the case of homogeneous finite-temperature collisionless plasma.
However, it is of interest to extend these considerations to inhomogeneous
systems as well, since laboratory experiments2 always employ bounded plasmas.

A number of other papers have treated this subject. Trivelpiece and
Gould3 considered a cylindrical cold plasma inside a concentric cylindrical
conducting surface in the quasi-static (low B) approximation. The boundary
conditiors lead to a dispersion relation with two branches, a lower one corres-
ponding to Langmuir oscillation, and an upper one, the '"backward wave', near
the cyclotron frequency. Gould)'L generalized this result for the lower branch
in the case of strong magnetic field (Qe >> wpe)’ using the finite-temperature
dielectric tensor and treating a smoothly vaerying cross-sectional density pro-
file instead of a step function. The effect of finite temperature is to intro-
duce Landau damping and to permit w to become greater than wpe for large k_,

Il
Just as in the homogeneous case.

Lichtenberg and Ja.yson5

consider one- and two-stream Maxwellian plasmas,
keeping lowest order finite temperature terms in the dielectric temnsor. For
a cylindrical plasma with constant density bounded at r = R (step-function
dependence), they solve the dispersion relation for the decay (growth) rate
in terms of frequency, wave length and plasma density, temperature and radius.
The contribution to this growth rate comes from resonance between electrons

and three plasma modes: the Langmuir oscillations, the n = 1 cyclotron

mode (backward wave) and the n = -1 mode.
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In this paper an approach similar to that of Lichtenberg and Jayson is
employed. In Section II a variational technique is used to calculate the
decay rate y as a small perturbation correction to the wave frequency. Here
a Maxwellian electron distribution is assumed, but the density and electric
potential a;e arbitrary slowly varying functions of position, regarded as
being obtained from measurements. They enter in the final expression for
y only in two rather insensitive averages. The result describes damping in
both upper and lower branches. Formulas for the growth rate in both
2-dimensional (slab) and cylindrical geometry are derived, for strong
(Qe > mpe) and weak (Oe < wpe) magnetic field.

In Section III, this calculation is modified to include the effect of
a low density electron beam. The beam is injected axially with a very narrow
velocity spread about a mean velocity which is a function of position. This
injected beam is shown to lead to an instability of the lower branch mode
vhich may be made quite gentle, so as to be describable by the gquasi-linear

theorye.



L

II. DECAY RATE FOR MAXWELLTAN PLASMA

We will consider a plasma which is uniform in the direction along the
uniform constant magnetic field (the z-direction) and inhomogeneous in the
transverse direction. We restrict ourselves to low B (quasi-static) systems,
so that the perturbed electric field is derivable from a potentisl. From

the linearized Vlasov equation we can obtain Poisson's equation in the form
Ve e Vo= 0. (1)

We discuss systems with two-dimensional geometry first, then outline the
analogous treatment of cylindrical systems.
For two-dimensional geometry we write the potential as
ik"z-ﬂnt

@ = ¥(x)e . (2)
¥(x) varies smoothly over the cross section of the plasma, so we can speak
of an effective transverse wave number kl ~ 1/R, where R is the plasma
width or radius. We assume Maxwellian velocity distributions with ion tem-

reratures not substantially larger than electron temperatures, so only the

electron contribution to ¢ need be retained. Then for long wavelengths

%— >> VT) (3)

and small electron Larmor radius

Y
==« 1, (k)

7

€ is given by



AN AA
= XX€ + zZze
where
© 2
-Z
¢ =14+ }: —P. ™% 1 (2)x [1+ x2(x )] (6)
i e wk"vT n n n ' n

and

}i a? z n2

e =14+ L2 z7(x e L 1 (2). (7)
1 net wk“vT n Z "n
2 lme®
Here mp is the electron plasma frequency, wb = n(x); Qe is the electron
cyclotron frequency; V'2 =2 H
T m
k2T
z = -%— << 1, by (4);
Qm
e
w-nﬂe
x = k"VT >> 1 (unless w = nﬂe), by (3);

Z is the plasma dispersion function of Fried and Conte8, defined by

2(¢) = | ax (8)

asymptotically for large argument; and In is the Bessel function of imaginary

argument of nth order




. In(z) ~ (fz)" [1 + 0(22ﬂ

for small z.

In Eq. (5) diagonal terms and corrections to e" and ‘; arising from the
variation of the density n have been dropped by Eq. (3) and Eq. (4);
inclusion of the latter can lead in some cases to the existence of unstable
drift modes, the universal instebility.

Next we expand Eq. (6) and Eq. (7) for large x, and small z, using the

asymptotic form Eq. (8). If in addition we write o = w, + iy, 7ﬁmo < 1,

0
and retain only terms to first order in 7ﬁmo and exp(-xi), the result is

@ 2
-« 2 - 2
w ) kv ‘)
c" =1 - —g + i 2ni'm§ ——-9——§ e | T + ——EE (9)
®q (w"VT) g
2 2 2
SETTUE R I e e N
V.
+ mO-Qe %o T g T § T
Qmmdmz
+ =553 (10)
(a)o"ne)

In Eq. (10), contributions from higher harmonics (|n| > 1) are exponentially
small unless nﬂe = ®»; then they are small like some power of z. Unless the
megnetic field is very weak, it is usually possible to neglect the n = -1
term as well, and this will be done in what follows.

Substitution of Eq. (5) in Eq. (1) yields



e N
1 3x

d 2
= - kue"'& = 0. (11)

For given boundary conditions and density profile n(x), this equation is
an eigenvalue problem which in principle yields the analytic form of ¥ and
a dispersion relation for complex o as a function of k . In general it is
not possible to carry out this calculation exactly, even in the limit T = O
where @ is real and the modes propagate undamped.

Nevertheless it is possible to utilize Eq. (11) in a variational

approach. To do this, we rewrite it in the form
» Ly = (L, + iLl)* =0 (12)

Here LO and Ll are the real and imaginary parts of L:

d ()2 2 (3)
o — — - k = O
L=z @ 54 4 b
w2 a?
(0) _ D (0) B,
€ =1 - » [ 4 1- 2
. 2_2 I 2
wy=ag ®y
2yw 2 w? w0 2
e(l) - — d:EZ + ; “ﬁ kEv exp _( Ov el
+ wy-() oy T I
7m2 w 2
eﬁl) = -'6' + 21"é wi 9 3 exp - kwv *
®g (k, vip) hT
. Now consider the equation
- Lo#o =0 (13)
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which describes undamped waves propagating at T = 0. Multiply Eq. (12) vy

* *
to(x), Eq. (13) by ¥ (x), and integrate over x from -® to +=:

* *

dx yoLo¥ + 1 [ dx yoLli¥ = O (14)
* *

[d.x ¥ Lo¥, = fdx VoLV = © (15)

since L) is self-adjoint. Finally, subtracting Eg. (15) from Eq. (14),

approximating *0 ~ y and integrating by parts yields

- 2.2 2
2w_k 7 2w_ 7 2
fdx—z-L3 60[? + fdx_L?(ea‘;’f; 2
O5=te

12'-11*(02 wo-Q 2 4 2
o [ |2 6
on T nT
-0
[ -]
2'!1ik k2w2a)
(0] 0 2
- | ax 5 X0 - | T le(x)| <
(k, vp) [

This may be solved for 7y as



3 2 2
&0 exp_( “’o) G_‘_né ®o exp_(“’o'“e .
(k v.)° & Ve B Ky Ve KV
2= . LT (17)
O L
0 a)o
G+ 5 ¥
2 QQ)
Ooe
where
2 ﬂz
Pe|axad S (18)
-0
o«
2 2
G = kﬁ ax @ Iv(x)l (19)

For an approximately homogeneous plasma in which Qe >> wp, the dis-
persion curve looks as shown in Fig. 1. On the lower branch, W << Qe, and

the equation for y reduces to

o 12
0
"
n% wo e k“vT G
(k"vT)3
m'L = - I (20)
0 w
59) F+G
e

The calculationsof Trivelpiece and Gould3 and of Gouldh show that for small
k", wo/ﬂe goes like k"R. Since F/G ~ (kuR)-e, we see that Eq. (20) reduces
to the familiar expression for the Landeu damping of a homogeneous plasma
in this limit, as it also does in the limit R = «®. On the upper branch,

Wy ~ Qe, and



f 2 2,12
w (.Q.e-l-wp)

p"/k

D ae—

Fig. 1 -- Dispersion curve for homogeneous plasma in strong field.
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2
_ wO‘Oe
w kv
%ﬂékwor e V1T E
ﬁL = - I Tu ’ (21)
0 w
0
—5 F+G
2 .2
wO_Qe)

which is valid provided l“’o’ne| is not small compared with k V.

If wp >> Qe through the bulk of the plasma, there are still two
branches; on the lower one, mo.s Qe, and on the upper one, w, >> Qe. Now
Eq. (17) does not simplify.

For the case of cylindrical symmetry we assume the potentisl is azi-

muthally symmetric:

ik z-iwt
p=glr)e ", (22)
and Eq. (11) becomes
F & (r‘; %rt) i kﬁen' =0 (23)

Here €, and ¢ eare again given by Eq. (6) and Eq. (7), since in three dimen-
sion ¢ is diagonal and €y ™ SN € in the approximations Eq. (3) and

xx
Eq. (4).

The variational calculation goes through unchanged, except that now

_d (0) a 2 (0).
Lo = ™. dr) RN

_a . (1) a 2 (1)
Ll = I rc:.L dr) - k"e" .
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The result is identical with Eq. (17), where now we must replace Eq. (18)

and Eq. (19) by

2
: 2 [dy
F'= | e [dr ; (2k)
0
G' = k° | ar nw |¢|2 . (25)

The formula for y simplifies as before when we specialize consideratioms.
This case may be generalized without difficulty to include azimuthal

dependence in ¥.



III. GROWTH RATE FROM BEAM INJECTION

We imagine that a low temperature beam of electrons moving parallel to
B is superposed on the Maxwellian which was considered in Section II. If we
ignore thermal motion within the beam altogether and assume it is cylindrically
symmetric, the part of the electron distribution function arising from the

beam has the form

£,(v,,7) = D(r)8 v, -v a(r)) (26)

vhere a(r) + Yo is the velocity with which particles at a distance r from

the axis of the system are moving; we assume a(0) = 0. In general, a(r)

will increase with r, since we may imagine the beam to have arisen as a result
of shooting electrons from an electron gun into a potential profile something

like that shown in Fig. 2.

7 \\

Fig. 2 -- General form of observed potential in plasma confined by
magnetic field. .
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We are primarlly interested in simple modes which propagate through the
plasma as a whole, that is, in which all the electrons in a cross-sectional
slice participate. This being the case, we may expect that for a beam dis-
tribution function which varies radially as does (26), the wave will see an effec-
tive distribution averaged over r. In the case of interest, the local beam

density is much smaller than the density of the background Maxwellian,
D(r) << n(r) (27)

To include the effects of the beam, we retrace the argument leading to

Eq. (17). If we assume Wy << f}, so that only the lower branch contributes

to 7, the equation becomes

2
3 [0
w K,V
(%—:%ﬂi—-——-——-o 5 © " G', (28)
0 (k vip)
where
-]
2 2
G' = r dr .
w | v]
0

Equation (28) reduces to the usual expression for linear Landau damping,
since G' cancels. However, if we write (28) for a general distribution func-

tion, it takes the form

2
(Vv

)

M|

Ime , (29)

C

®
L:-G-]—.,' [rdr!t!
(.Do J

0




15

where ¢ 0 is the usual dielectric function

02 af/BV"

GH l+ k2 dV" M—T“ .

When we write f = fm+fbea.m’ the contribution of the beam to the growth

(decay) rate is,for y << ®q

w
v - —,‘9) (30)
where

g = D(r) B(V -V - a(r)).

In calculating al—, , we can ignore fb’ since the beam density is much smaller
than the background density.
Equation (30) may be rewritten in order to investigate particular

choices of a(r) and D(r). To do this we assume that a(r) is monctone increas-

ing, so that

b(v - Vo - a(r)): ﬂ,l-;p- 5(1‘-1‘0):

where a(ro) = V-V, and Q' = _g_a; . Then integrating by parts we have




® ®
2
\
ya - L 2 2n ‘29 39 3 1
(wo) Gv[dr r|y] o3| & dv 8|v - k) Nr) = m &(r-r,)
beam
o -
® - -}
@) w. 8(r-r.)
G2 k)fdrrlvi wpD(r)fdvavﬁv-?m
0 -
2 ¢ 2 2
1 n| % d ®y I‘|¢| w0, D(r)O(rO)
=tk | e A7)
- r=r,
2 2
L n (%] a )|T]¥T e p(r)e(xy)
=F-2. k g\; al(ro) (L)O'
r:ro v = T(— (31)
We can write
3 _ 9| & __1 3
v~ dv|. 3r a'(r.) ar’
T o
Ye)
2 r 2 2
2 1 n|% 1 y rl*l @y D(r)e(r)
(wO) AR a'ZrO) ?r a'(r) o
beam ] a'l @y ,
e k 0
2 2 2
1 n (% 1 1‘0|¢| @) D(ro)a(ro)
TG 2\ x| alry HEN) + O(ro)
0 0
REIE0
3 aru e : (32)
rga-ll“_jg_v\ .
| ~ Vo] T o
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This shows that the contribution to y for a particular phase velocity wo/k

comes from particleé at a distance To sufficient to make

w

0
Vo + a(ro) =5 -
For wO/k < Vs there are no such particles, since a(r) > 0; so if 53%5% >0

as r = 0, there is a jump in the effective velocity distribution, yielding
a & function dependence in y. This & function results from our assumption
that the beam had zero temperature; in fact, it is smoothed out for finite
beam temperatures.

Following Fig. 2, let us examine some plausible choices for a(r). We
assume D(r) = D, a constant, and assume that mi and |¢l2 are roughly constant
out to some value r = R.

The first choice is

a(r) = Ar2, A = constant. | (33)
. vy | /2
Then @'(r) = 2Ar, and Ty = N . We see that there is a Jjump in the

effective distribution, since

lim 'r )= L. const.
r = O+ a er 2A
Formula ( R) yields |
2 2 2
W D tl w
y S S Y 1 | b - -
Z| -&3 2| T [8(rg) - 8(rgR)] - (30)
beam 0
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. The peak at Ty = R 18 of course rounded if we retain a realistic radial

2
dependence for a)p| ] 2,

For the second choice of a(r), we argue as follows: an electron will

have kinetic energy

—2]:mv = E, - v) (35)

where EO is the "muzzle" energy of the electron gun and V is shown in

Fig. 2. If V has roughly parabolic dependence or r, then

. 1/2
& [\% + vare] (36)
Thus
1/2
alr) = (vg + »°r%) " - v

1 a4 [_r)_1
a'(r) dr |a'(r) b2 )
Now formule (37 ) tells us that for O < ro <R,

2
o) 2, .21
‘k—) prl*l '1,—2.

ya =217
@, TG 2
beam

as shown in Fig. 3.
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fo) \YJ +Q(R)

Fig. 3 -- Growth rate resulting from beam with dependence

a(r) = v + u2r2)i

0 - Vo

0]

It is not necessary to treat finite beam temperature to remove the sharp
peak in y. Thus far we have taken D(r) to be a constant. If a template is
Placed before the stream of electrons from the electron gun, it can screen
some out, so that D(r) may vanish at r = O. For example, let the template
be in the form of a screen whose edges have roughly the shape shown in Fig. 4,
satisfying the equation r2 = aesino.

Y

Fig. &4 -- Outline of a template with shape described by r2 = a?sinG.
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o

eint

r
a2 r2
Then D(r) ~ 4 do = 4 =5 for r small.
a
6]

2
Now, taking mp|\b|2 gradually decreasing as r increases (instead of a

sudden drop at r = R), we have for y a curve of the form shown in Fig. 5.

‘ (@5)
w
°/ BEAM 4 - -‘i'ki’
* VO ‘\\\\\\s__——////7r

Fig. 5 --' 7/a>o modified by template and radial dependence of plasma.

Note that the area under the curve sums to zero. This follows from
the next to last line of Eq. (31), which expresses y as a total derivative
with respect to v of a quantity which vanishes as v ~ Yo and v —~ ®,

We conclude that it is possible to produce the '"gentle bump" instability

discussed in linear and quasilinea.r6 analyses of infinite plasmas in a

bounded laboratory plasma by proper adjustment of the injected electron beam.




| 21
;

ACKNOWLEDGEMENT

The author wishes to thank Dr. William E. Drummond for suggesting the
approach used in this work and Dr. John H. Malmberg and Prof. Marshall N.

Rosenbluth for useful discussion.



22

REFERENCES

See for example, T. H. Stix, The Theory of Plasma Waves, McGraw Hill
Co., Inc., New York, 1962.

J. H. Malmberg, C. B. Whaerton, Phys. Rev. Letters 13, 184 (1964).

A. W. Trivelpiece, R. W. Gould, J. of Appl. Phys., 30, 1784 (1959).
R. W, Gould, to be published.

A. J. Lichtenberg, J. S. Jayson, Electronics Research Laboratory
(University of California) Internal Technical Memorandum M-75, 196L.
W. E. Drummond, D. Pines, Nucl. Fus. 1049, 1962 Supplement, Part 3.
Mikhailovskii, A. B., "Oscillations in an Inhomogeneous Plasma", in

Voprosy Teorii Plazmy, ed. by M. A. Leontovich, Gosatomizdat, Moscow,

1963.

B. D, Fried, S. D. Conte, The Plasma Dispersion Function, Academic

Press, Inc., New York, 1961.



